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Background on symplectic topology



Calabi-Yau Manifolds

Definition
A Calabi-Yau n-fold is a n-dimensional complex Kähler manifold M,
such that, if ω is the Kähler form, there is a holomorphic
(n, 0)-form Ω such that

ωn

n!
= (−1)n(n−1)/2

(
i

2

)n

Ω ∧ Ω.

A CY n-fold is symplectic. Let L be an oriented Lagrangian
(embedded or immersed - singular!). A grading is a smooth
function θL : L→ R (phase) such that Ω|L = e iθLdVL, where dVL is
a volume form on L. A graded Lagrangian is thus a pair (L, θL).
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Calabi-Yau Manifolds

Examples:
I Cn with coordinates z1, ..., zn and standard complex structure

and metric is an (exact) CY n-fold via:

ω =
i

2
(dz1 ∧ dz1 + · · · · · · dzn ∧ dzn), Ω = dz1 ∧ · · · ∧ dzn.

I The Fermat quintic: {[z0 : · · · : z4] ∈ CP4 | z4
0 + · · ·+ z4

4 = 0}
is a CY 3-fold, with Kahler metric given by restricting the
Fubini-Study metric.

I Consider a complex 2-torus A and consider the orbifold
A/Z/2Z acting by x 7→ −x . This has 16 points that look like
the vertex of a cone. Blowing up these points gives a CY
2-fold, called a Kummer surface.
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The derived Fukaya category

Definition
Fix a field F and CY n-fold M. A Lagrangian brane is a pair (L,E )
with L a compact spin graded Lagrangian in M, and E → L is a
rank-one F-local system on L.

If we work with embedded branes L, L′ that intersect transversely,
we get the Floer complex CF •(L, L′). If M is not exact, we must
assume the existence of a bounding cochain to ensure that HF • is
well-defined.

Definition
Let M be a CY n-fold. The Fukaya category of M, FukM is the
A∞ category with objects embedded Lagrangian branes with HF •

unobstructed, and morphisms are the (Z-)graded Λnov -modules
CF •(L, L′) with the A∞ operations we discussed in class.
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The derived Fukaya category

A triangulated category is an additive category with the following
datum:
I Additive category with a “shift" functor [1],

I Have a collection of diagrams (triangles) of the form

A→ B → C → A[1]

which we refer to as distinguished.

A B

C
[1]

I Triangles must satisfy certain axioms.
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The derived Fukaya category
The axioms are:
I A

id→ A→ 0→ A[1] is distinguished,

I any triangle which is isomorphic to a distinguished triangle is
distinguished,

I any morphism A→ B can be completed to a distinguished
triangle,

I A→ B → C → A[1] is distinguished iff
B → C → A[1]→ B[1] is distinguished (up to a sign),

I Given a partial morphism of triangles, there is exists a ‘filling’
(possibly not unique!)

A B C A[1]

A′ B ′ C ′ A′[1]

∃

I the octahedral axiom. Roughly speaking, given f : A→ B and
g : B → C this compares the triangles associated to f and g
and the triangle associated to g ◦ f .
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The derived Fukaya category

Example: Take A abelian, and define C (A) to be the category of
cochains of objects in A.

Define Kom(A) to have the same objects,
but morphisms are cochain maps up to homotopy equivalence.

Fact: Kom(A) is triangulated, with shift functor [1] being the
cohomological shift of complexes, and distinguished triangles are all
of the form

A
f→ B → Cone(f )→ A[1].

One can go further and "invert" all quasi-isomorphisms (maps
which induce isomorphisms on cohomology) in Kom(A). The
resulting category is called the derived category D(A), which is also
triangulated.
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The derived Fukaya category

Example: Let X = SpecA be an affine variety, where A is a finitely
generated C-algebra.

X comes with a sheaf of rings OX , which
since X is affine, we can identify with the ring A. Finitely generated
modules over A can be regarded as sheaves on X , called coherent
sheaves.

Now if X is a projective variety, then coherent sheaves are the
modules over OX which are glued together from the affine case
above. That is, F is coherent if there is an affine open cover
X = ∪Ui , Ui = SpecAi such that F |Ui

can be identified with a
finitely generated module over Ai . The category cohX is abelian.

Define the category Db(X ) = Db(cohX ) to be the subcategory of
D(cohX ) consisting of complexes which are concentrated in
degrees lying in a bounded interval I ⊂ Z.
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The derived Fukaya category
FukM does not fit into the previous example, so it requires special
care. Let A be an A∞ category.

Step 1. Additive enlargement: Objects become formal direct sums of
formal shifts. That is, define ΣA to be the category with
objects finite sums ⊕Xi [ki ] with Xi ∈ A and ki ∈ Z.

Morphisms are defined as:

HomΣA(⊕iXi [ki ],⊕jYj [`j ]) = ⊕i ,j HomA(Xi ,Yj)[`j − ki ].

Recall, morphism spaces in A are graded vector spaces, so the
shift on the latter makes sense.
I Note that there are induced multiplication maps mk .

Step 2. Twisted complexes: Define the category TwA whose objects
are pairs (X , δX ) with X ∈ ΣA and
δX = (δijX ) ∈ HomΣA(X ,X ) is a lower triangular matrix such
that

∞∑
k=1

mk(δX , ..., δX ) = 0.

Note the sum is finite as δX is lower triangular.
I TwA is a triangulated A∞ category.
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The derived Fukaya category

Step 3. Get a “honest” triangulated category by setting
Db(A) = H0(TwA), that is, objects of Db(A) are the same
as twisted complexes, but

HomDb(A)(X ,Y ) = H0(HomTwA,m
TwA
1 )

I Often, it is better to work with the idempotent completion
(“adding direct summands”), denoted Dπ(A). In the
1-categorical setting: given a linear category C, a morphism
p : X → X is called idempotent if p2 = p. Let Y be the image
of p, and we formally add maps u : X → Y , v : Y → X such
that u ◦ v = idY , v ◦ u = p. In this new category, this
decomposes X = Y ⊕ Ker p.
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The derived Fukaya category
By Db FukM (resp. Dπ FukM), we mean the above construction
applied to FukM. The shift functor [1] acts by reversing orientation
of L and shifting the grading of L by π.

Some distinguished
triangles are given by Dehn twists (Seidel) and connected sums
(FOOO).

So why even construct Db FukM? FukM is hard to work with
directly, so you could try H0(FukM) instead (passing from A∞ to
1-categorical). But this category does not have a great structure, in
particular, its not triangulated, so computations are difficult. TwA
is in some sense the “smallest enlargement” of an A∞-category A
so that the result is triangulated.

Conjecture (Kontsevich)
Let M and M̂ be two “mirror” CY n-folds. Then there is an
equivalence of triangulated categories

Dπ FukM ∼= Db(coh M̂).
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1-categorical). But this category does not have a great structure, in
particular, its not triangulated, so computations are difficult.

TwA
is in some sense the “smallest enlargement” of an A∞-category A
so that the result is triangulated.

Conjecture (Kontsevich)
Let M and M̂ be two “mirror” CY n-folds. Then there is an
equivalence of triangulated categories

Dπ FukM ∼= Db(coh M̂).
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The derived Fukaya category for immersed Lagrangians

For future conjectures, it is necessary to enlarge the Fukaya
category to include immersed Lagrangians. Some work toward this
has been done by Akaho-Joyce, we briefly survey it here.

Let ι : L→ M be a compact immersed Lagrangian such that
ι−1(p) is at most two points for each p ∈ M, and when
ι−1(p) = {p−, p+}, the two sheets L− and L+ intersect
transversely at p.

As before, a Lagrangian brane is a pair (L,E ) with L a compact
spin graded Lagrangian in M, and E → L is a rank-one F-local
system on L. We allow immersed Lagrangians under the
assumptions above.
If L is a Lagrangian brane with a self-intersection, we need a notion
of a bounding cochain so that HF • is unobstructed.
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The derived Fukaya category for immersed Lagrangians

Akaho-Joyce define a bounding cochain for a Lagrangian with
transverse self-intersections as:
I an element bc in Sn−1(L,Λ>0

nov ) which satisfies the same
relation that a bounding cochain does for embedded
Lagrangians, and

I for each p at which two local sheets L+ and L− intersection
transversely with µL+,L−(p) = 1, an element

bp ∈ HomF(E+|p,E−|p)⊗ Λ≥0
nov

where E± = E |L± . This must satisfy a more complicated, but
similar relation.

Upshot: we get an immersed Fukaya category FukM and immersed
derived Fukaya category Db FukM.
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The derived Fukaya category for immersed Lagrangians

Example: Suppose (L1,E1, b1), (L2,E2, b2) are embedded
Lagrangians intersecting tranversely. Then L = L1 ∪ L2 is an
immersed Lagrangian brane with transverse self-intersection with
two branches. Then we can take bc = b1 ⊕ b2, together with bp for
each p ∈ L1 ∩ L2 which encode how L1 and L2 relate to L in
Db FukM.

Note this implies that all objects in TwFukM can be
thought of as disjoint unions of Lagrangians.

Similar to the embedded case, Dπ FukM will denote the
idempotent completion of the immersed derived Fukaya category.

Open (?) problem: Generalize the construction of FukM to more
general immersed Lagrangians.
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Stability conditions on triangulated categories



Moduli of vector bundles on Riemann surfaces

The theory of holomorphic vector bundles on Riemann surfaces is a
very classical area of study, with many interesting connections to
other subjects. For many reasons, the moduli spaces of such vector
bundles is the primary object of study.

However, the behavior of many vector bundles can be “wild” (in
some sense) in families, so often one restricts the bundles that form
the moduli space. We call such bundles stable. Example: on CP1,
the bundles En = O(−n)⊕O(n) are “wild”, any moduli space
which includes En would need to be infinite dimensional.

Theorem (Donaldson-Uhlenbeck-Yau)
A vector bundle is stable if and only if it admits a
Hermitian-Einstein connection.
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Moduli of vector bundles on Riemann surfaces

Let E → X be a holomorphic vector bundle on a Riemann surface.
Let c1(E ) ∈ H2(X ,Z) be its first chern class.

Define the degree of
E to be the evaluation deg E = c1(E ) _ [X ], where
[X ] ∈ H2(X ,Z) is the fundamental class.

Now let the slope of E to be the ratio µ(E ) = deg E/ rkE . E is
said to be slope-stable (semistable) if, for every proper nonzero
subbundle F ⊂ E , µ(F ) < µ(E ) (resp. µ(F ) ≤ µ(E )). One can
then construct moduli space of (semi)stable bundles of some fixed
rank and c1. Roughly, a stable bundle has more sections then any
proper subbundle.

Every vector bundle E admits a distinguished filtration

0 = E0 ⊂ · · · ⊂ En = E

whose quotients are semistable with decreasing slope. This is called
a Harder-Narasimhan filtration.
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Moduli of vector bundles on Riemann surfaces

The slope is convenient for Riemann surfaces, but hard (in many
cases, impossible) to generalize.

To illustrate a stability condition,
consider

Z (E ) = − deg E + i rk(E ).

Since this is a complex number, it has a phase φ, and
φ(E ) = 1

π arcot(−µ(E )). This also extends to cohX .

Note also that degree and rank are additive, so Z is actually a
group homomorphism

Z : K0(cohX )→ C

such that if E 6= 0, then Z (E ) 6= 0.
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Moduli of vector bundles on Riemann surfaces

Define P(φ) to be the full (abelian) subcategory of cohX whose
objects are semistable with phase φ. The stable objects of phase φ
are the simple objects in P(φ).

Similarly, the Harder-Narasimhan filtration can be rephrased in
terms of decreasing slope.

By using the isomorphism K0(cohX ) ∼= K0(Db(X )), we can now
talk about stable objects in Db(X ).
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Bridgeland stability conditions

Definition
Let T be a triangulated category, a stability condition on T is a
pair (Z ,P) consisting of a morphism Z : K0(T )→ C called the
central charge, and for each φ ∈ R, a full additive subcategory
P(φ) ⊂ T such that

I If A ∈ P(φ), then Z (A) = m(A)e iπφ for some m(A) > 0,
I P(φ+ 1) = P(φ)[1],
I if φ > ψ, then Hom(P(φ),P(ψ)) = 0, and
I For each nonzero object F ∈ T , there is a finite sequence
φ1 > · · · > φn and Aj ∈ P(φj) such that

0 F0 F1 F2 · · · Fn−1 Fn F

A1 A2 An

[1] [1]
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Bridgeland stability conditions

Let Stab(T ) be the set of (locally finite) stability conditions on T .
This forms a (possibly infinite dimensional) complex manifold. The
(semi)stable objects under a given stability condition can be
packaged into a “geometric space”.

Often this geometric space is nice (e.g. projective variety or
compact complex manifold) of some (likely high) dimension. This
gives good tools to study the geometry of higher dimensional
spaces by relating them to the study of the derived categories of
the lower dimensional spaces. Also can be used to give information
about the autoequivalences of T .
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Joyce’s Conjectures
Recall that a graded Lagrangian is said to be special of phase φ if
its phase function is constant.

Conjecture (Joyce-Thomas-Yau)
Let M be a CY n-fold, either compact or with suitable conditions in
the noncompact setting, and let Db FukM be the embedded
derived Fukaya category. Then there is a Bridgeland stability
condition on Db FukM such that
(a) The morphism Z is the composition

K0(Db FukM) Hn(M,Z) C
(L,E ,b)7→[L] [L] 7→

∫
L Ω

(b) If (L,E , b) ∈ Db FukM with L a special Lagrangian of phase
φ, then (L,E , b) ∈ P(φ).

(c) Enlarge Db FukM to include singular and immersed
Lagrangians. Then for every φ ∈ R, every isomorphism class of
objects in P(φ) has a unique representative (L,E , b) with L
special Lagrangian of phase φ.
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Lagrangians. Then for every φ ∈ R, every isomorphism class of
objects in P(φ) has a unique representative (L,E , b) with L
special Lagrangian of phase φ.



Joyce’s Conjectures
Recall that a graded Lagrangian is said to be special of phase φ if
its phase function is constant.
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Joyce’s Conjectures

Part (c) above is likely false as stated, simply because it may
require more singular Lagrangians then the theory can handle. An
alternative is the following:

Conjecture
Enlarge Db FukM so that it contains some immersed or singular
Lagrangians. Then for any ε > 0 and φ ∈ R, every isomorphism
class of objects in P(φ) has a representative (L,E , b) with
θL : L→ (πφ− ε, πφ+ ε)

Some remarks:
I An example of the kind of enlargement that may work is

Db FukM. Note that this enlargement is necessary for
uniqueness, as it is possible that the representative could be
immersed. In addition, one proposed way of proving the above
conjecture is Lagrangian mean curvature flow, in which some
badly singular Lagrangians can arise.
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Joyce’s Conjectures

I By using Kontsevich’s HMS, one can hope to construct
stability conditions on Dπ FukM by instead looking at stability
conditions on Db(coh M̂). The latter category is significantly
better understood, and explicit stability conditions have been
constructed when M is a CY n-fold where n = 1, 2, 3 (n = 3
case depends on a conjecture).

The HMS equivalence has been proven for elliptic curves and
smooth projective hypersurfaces X ⊂ Pn of degree n + 1.



Joyce’s Conjectures

Again, take an enlargement of Db FukM and suppose α ∈ R is
such that Z (L) does not have phase α for all classes (L,E , b).
Since Z (L) is computed from the (co)homology classes [Ω] and [L],
there are at most countably many phases in the image of Z . So we
have many choices for α.

Define Aα to eb the full subcategory of objects such that the phase
function θL : L→ (πα, π(α + 1)), and Aα to be the
isomorphism-closure of Aα.

The objects of Aα can be assigned a global phase φ(L) via∫
L Ω = Re iφ(L). This can of course be extended to Aα.



Joyce’s Conjectures

Again, take an enlargement of Db FukM and suppose α ∈ R is
such that Z (L) does not have phase α for all classes (L,E , b).
Since Z (L) is computed from the (co)homology classes [Ω] and [L],
there are at most countably many phases in the image of Z . So we
have many choices for α.

Define Aα to eb the full subcategory of objects such that the phase
function θL : L→ (πα, π(α + 1)), and Aα to be the
isomorphism-closure of Aα.

The objects of Aα can be assigned a global phase φ(L) via∫
L Ω = Re iφ(L). This can of course be extended to Aα.



Joyce’s Conjectures

Again, take an enlargement of Db FukM and suppose α ∈ R is
such that Z (L) does not have phase α for all classes (L,E , b).
Since Z (L) is computed from the (co)homology classes [Ω] and [L],
there are at most countably many phases in the image of Z . So we
have many choices for α.

Define Aα to eb the full subcategory of objects such that the phase
function θL : L→ (πα, π(α + 1)), and Aα to be the
isomorphism-closure of Aα.

The objects of Aα can be assigned a global phase φ(L) via∫
L Ω = Re iφ(L). This can of course be extended to Aα.



Joyce’s Conjectures

Again, take an enlargement of Db FukM and suppose α ∈ R is
such that Z (L) does not have phase α for all classes (L,E , b).
Since Z (L) is computed from the (co)homology classes [Ω] and [L],
there are at most countably many phases in the image of Z . So we
have many choices for α.

Define Aα to eb the full subcategory of objects such that the phase
function θL : L→ (πα, π(α + 1)), and Aα to be the
isomorphism-closure of Aα.

The objects of Aα can be assigned a global phase φ(L) via∫
L Ω = Re iφ(L). This can of course be extended to Aα.



Joyce’s Conjectures

We say that a nonzero object (L,E , b) in Aα or Aα is stable
(semistable) if there is no distinguished triangle

L1 → L→ L2 → L1[1]

with L1, L2 nonzero with φ(L1) ≥ φ(L2) (resp. >).v

Conjecture (Joyce-Thomas)
Aα is the heart of a bounded t-structure (so both Aα and Aα are
abelian) and under the conjectured Bridgeland stability condition,
P(β), β ∈ (α, α + 1) consists of semistable objects in Aα with
global phase πβ.

Corollary
Db FukM is idempotent complete, that is, Dπ FukM ∼= Db FukM.
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Joyce’s program

Let (M, g) be Riemannian, and i : N → M a (embedded or
immersed) submanifold of lower dimension. The mean curvature
flow of N is the study of smooth 1-parameter families it : N → M,
t ∈ [0,T ), satisfying

dit
dt

= Ht ,

where Ht is the means curvature of the submanifold it : N → M.

It is known that applying MCF to a Lagrangian yields another
Lagrangian, and further if L = L0 admits a grading, all Lagrangians
in the family are Hamiltonian isotopic. Special Lagrangians are
stationary points.

Now lets sketch Joyce’s proposed program to be the main
conjecture.
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Joyce’s program

Define Z as previous and P(φ) to either be the full subcategory of
objects isomorphic to a special (possibly singular) Lagrangian of
phase φ, or the full subcategory of objects which are isomorphic ot
a Lagrangian with phase bounded around φ. Let F = (L,E ) be a
nonsingular immersed brane. We need to construct a diagram

0 F0 F1 F2 · · · Fn−1 Fn F

A1 A2 An

[1] [1]

where Aj are special Lagrangians of decreasing phase or
Lagrangians with decreasing bounded phase.



Joyce’s program
The idea is to prove existence and uniqueness of mean curvature
flow under suitable boundary conditions. That is, construct a family
(Lt ,E t) such that
I (L0,E 0) = F ,

I There is a finite series of singular times 0 < T1 < T2 < · · ·
where (Lt ,E t) for t 6= Ti is isomorphic to L and Lt is an
immersed compact graded Lagrangian in M with HF •

unobstructed.
I The family must satisfy Lagrangian mean curvature flow.
I We have that limt→∞ Lt = L1 ∪ · · · ∪ Ln, where Lj is a

(singular) special Lagrangian of phase φj , or, Lagrangians with
phase bounded around φ.

Expected to be, in dimension 3, roughly on par with the Poincaré
conjecture in terms of difficulty. In addition, this strategum requires
working with at least immersed Lagrangians, as embedded
Lagrangians can flow into immersed one in finite time.
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Some other conjectures around stability conditions

Theorem (Haiden, Katzarkov, Kontsevich)
Let S be a marked surface of finite type and M(S) the space of
marked flat structures on S . Then there is a natural map
M(S)→ Stab(Fuk S) which is bianalytic onto its image.

Open question: is this map surjective?
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Some other conjectures around stability conditions

It is a surprisingly interesting question to count the number of
curves on a CY n-fold X .

There are at least three ways:
I GW theory: counting pairs (C , f ) where C is a stable curve

and f : C → X is a morphism. Resulting invariants are
Q-valued.

I DT theory: counting subschemes Z ⊂ X of dimension ≤ 1.
Z-valued.

I PT theory: counting pairs (F , s), s : OX → F where F is a
pure one-dimensional sheaf and s is surjective in dimension
one.

All of these are conjecturally equivalent, related to certain
properties and features of the stability manifold
Stab(X ) = Stab(Db(cohX )).
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Thank you!


