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1 Kähler Geometry

Kähler manifolds serve as a very rich class of objects to study in many areas of math, and in these
notes we will explore a specific part of this area. Typically Kähler manifolds show up in areas
of math involving Algebraic and Differential Geometry, and here we will discuss how analysis of
several complex variables contributes to this subject. Throughout, we will work exclusively with
compact Kähler manifolds.

1.1 Introduction, Basic Definitions

We begin with the definition of a compact complex manifold, and give a few examples.

Definition 1.1 (Complex Manifold). Let X be a compact Hausdorff topological space. A system
of local coordinates on X is a cover {Uα} with homeomorphisms zα : Uα → Cn, such that whenever
Uα ∩ Uβ 6= ∅, the composition

φαβ = zβ ◦ z−1
α : zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ)

is a biholomorphic map.
We say that X is a compact complex manifold of dimension n, if it can be endowed with a complex

structure, i.e. an equivalence class of systems of local coordinates (where two systems {(zα, Uα)},
{(wβ, Vβ)} are equivalent if the maps zα(p)→ wβ(p) are biholomorphic whenever defined).

In particular, a complex manifold of dimension n can be regarded as a smooth (real) manifold
of dimension 2n. There are several notions of the tangent space to a point p ∈ X:

1. the usual real tangent space TR,pX, which can be thought of as the space of real derivations
on the ring of C∞ functions near p (or equivalently, the stalk at p of the sheaf of derivations
acting on the sheaf of smooth functions on X);

2. the complexified tangent space TC,pX = TR,pX ⊗ C;

3. the holomorphic tangent space T ′pX ⊂ TC,pX consisting of derivations that vanish on anti-
holomorphic sections.

If we have a complex manifold X, as before we can regard it as a real 2n-dimensional smooth
manifold, equipeed with extra data. This extra data consists of an endomorphism J of the real
tangent bundle TRX satisfying 

J2 = −id

J(∂xj ) = ∂yj
J(∂yj ) = −∂xj .

It is worth remarking that the holomorphic tangent bundle is the bundle of eigenspace corresponding
to i when J acts on TCX. In addition, recall that a Riemannian metric g smoothly assigns an inner
product 〈·, ·〉p to each TpX.



Definition 1.2 (Hermitian Metric). A Riemannian metric on X is called Hermitian if it satisfies

g(u, v) = g(Ju, Jv)

for all u, v ∈ TpX and all p ∈ X.

It should be clear that we can write a Hermitian metric as

g = 2<

∑
α,β

gαβdzα ⊗ dzβ


where the matrix (gαβ) is a Hermitian matrix. From this matrix, we can associate a form of bidegree
(1,1), called the fundamental form:

ω =
∑
α,β

gαβidzα ∧ dzβ.

Definition 1.3. We say that a Hermitian manifold is Kähler if its fundamental form ω is closed.
In this case we call the fundamental form the Kähler form.

1.2 Line Bundles, Chern Classes

We will now change gears to discuss a more topological construction, the Chern class of a line
bundle. We have already implicitly assumed that the reader knows the definition of a vector
bundle, but we will repeat it here in the case of line bundles.

Definition 1.4. Let X be a complex manifold. A holomorphic line bundle L
π→ X is a complex

manifold such that

1. for each x ∈ X, π−1(x) is a one dimensional complex vector space;

2. the projection map π : L→ X is holomorphic;

3. for each x ∈ X, there exists an open neighborhood U ⊂ X of x and

φU : π−1(U)→ U × C

is a biholomorphic map.

The map φU is called a local trivialization of L. Note that for any pair of trivializations φU , φV ,
there is a holomorphic map gUV ∈ O(U ∩ V,C∗) such that φU ◦ φ−1

V maps U ∩ V × C to itself via

(x, v) 7→ (x, gUV (v)).

These maps gUV are called the cocycles or transition maps for the line bundle, and in particular
they satisfy

gUV · gV U = 1, gUV · gVW · gWU = 1.

These are called the cocycle conditions.
Conversely, given a cover and a collection of transition maps, there exists a unique (up to isomor-

phism) line bundle having those maps as its transition functions (this proof is not too difficult, so
we again leave to the reader). The cocycle conditions on the above maps turn out to exactly be the
requirements for {gUV } to be a Čech 1-cochain on X with values in the sheaf O∗. Thus we see that



the Čech cohomology group H1(X,O∗) parametrizes the line bundles on X up to isomorphism.
This group is referred to as the Picard group of X.

Now we have the so-called exponential exact sequence on sheaves:

0→ Z 2iπ(·)−→ O exp−→ O∗ → 0

which induces a long exact sequence in cohomology, of which there is a boundary map

δ1 : H1(X,O∗)→ H2(X,Z).

Definition 1.5. Let L be a line bundle. This line bundle determines, up to isomorphism, a coho-
mology class [L] ∈ H1(X,O∗), and we define the first Chern class of L, c1(L) to be δ1([L]).

We will sometimes be interested in the image of c1(L) under the map H2(X,Z)→ H2(X,R) induce
by the normal inclusion.

There is very important line bundle in particular that we are interested in, namely the canonical
bundle.

Definition 1.6. Let ΩCX = (TCX)∗ = Ω1,0X ⊕ Ω0,1X, and we set the canonical bundle to be
KX = ∧nΩ1,0X = Ωn,0X. The anticanonical bundle is the bundle K∗X .

We then, for any complex manifold X, say that the first Chern class of X is the first Chern class
associated to the anticanonical bundle of X, c1(X) = c1(K∗X). This is (of course) a cohomology
class that does not depend on ω, but rather on the complex structure on M .

There is one more result that we will use below. The reader has likely heard of it (at the very
least!), but we put it here for completeness.

Lemma 1.0.1 (∂∂̄-lemma). Let X be a compact Kähler manifold. Let S be a current which is both
∂ and ∂̄ closed. Then S is d exact if and only if it is ddc exact.

1.3 Curvature

As you may recall, on a Riemannian manifold with metric g there is a unique connection ∇, called
the Levi-Civita connection, which satisfies:

1. ∇g = 0;

2. [X,Y ] = ∇XY −∇YX, for any two vector fields X,Y .

Similarly, on any Hermitian vector bundle, there is a canonical “nice” connection, called the Chern
connection ∇̂ that satisfies very similar properties as above. Namely:

1. ∇̂g = 0;

2. ∇̂J = 0;

3. the torsion is pure in its indices.

When the base manifold is a Kähler manifold and the vector bundle is its tangent bundle, these
two connections agree. We can look at the Christoffel symbols on TCX:

∇zi∂zj =
∑
l

Γlij∂zl +
∑
k

Γk̄ij∂z̄k



and
∇zi∂z̄j =

∑
l

Γlij̄∂zl +
∑
k

Γk̄ij̄∂z̄k .

An application of the Kähler condition forces the only nonzero terms to be Γlij and Γk̄
īj̄

. We
can similarly define the Riemann curvature tensor as in Riemannian geometry, except due to the
restrictions above on nonzero Christoffel symbols, we find that the only nonzero terms are the
coefficients of the form

Rij̄kl̄ = − ∂2gij
∂zk∂z̄l

+
∑
s,t

gst
∂gsj
∂zk

∂git
∂z̄l

.

Again as in Riemannian geometry, the often easier quantity to work with is the Ricci curvature
tensor, which is defined as the trace of the Riemann curvature tensor:

Rickl =
∑
i,j

gijRij̄kl̄ = − ∂2

∂zk∂z̄l
log det(gpq)

and using the K”̈ahler form, we can also associate the Ricci form to this:

Ric(ω) =
ic

2

∑
α,β

Ricαβdzα ∧ dz̄β.

A fundamental consequence of this is if ω̃ is another Kähler form on X, then Ric(ω̃) − Ric(ω) =
1
2dd

c log ω̃n

ωn .

Lemma 1.0.2. The Ricci form is a closed (1, 1)−form representing the first Chern class c1(X) of
X.

This lemma now brings us to the Calabi conjecture.

1.4 The Calabi Conjecture

Given a compact Kähler manifold we have already seen that the Ricci form Ric(ω) is a closed (1,1)
form representing the first Chern class of X. Calabi, in the 50’s, asked the converse. That is, given
a closed (1,1) form η representing c1(X), and α ∈ H1,1(X,R) a Kähler class, whether or not there
exists a Kähler form ω in α such that Ric(ω) = η. The answer to this question is yes, and it was
proven by Yau in 1978.

Theorem 1.1. Let X be a compact Kähler manifold and fix a Kähler class [α] ∈ H1,1(X,R). Given
a smooth closed (1,1)-form η representing c1(X), there exists a unique Kähler form ω ∈ [α] such
that Ric(ω) = η.

Our goal from now on will be to prove (most of) this theorem.

2 Strategy for the Proof

2.1 Reformulation of the Conjecture

Fix η as a representative of c1(X) and ω a Kähler form in a given Kähler class. Since Ric(ω) also
represents c1(X), it follows from the ∂∂̄-lemma that there exists h ∈ C∞(X,R) such that

Ric(ω) = η + ddch.



We now seek a new Kähler form, cohomologous to ω, so that ωϕ = ω+ddcϕ, satifying Ric(ωϕ) = η.
So we are attempting to solve

Ric(ωϕ)− Ric(ω)− ddch = ddc
(

log

{
(ω + ddcϕ)n

ωn

}
− h
)

= 0.

However this implies that the argument is pluriharmonic, and so on X, which is compact, it must
be constant. So shifting h by a constant if necessary, we see by taking the exponential of the
resulting equation that we must solve

(ω + ddcϕ)n = ehωn,

which is a nonlinear inhomogeneous PDE. Note that we require h also satisfies the normalizing
condition: ∫

X
ehωn =

∫
X
ωn = Vol(X).

2.2 How Do We Solve It?

Our strategy is to use the continuity method. That is, we consider a smoothly varying family of
equations

(ω + ddcϕ)n = [teh + (1− t)]ωn, (Yt)

each satisfying the normalizing condition as above. Clearly, when t = 0, the equation admits the
trivial solution ϕ ≡ 0, so it is nonempty, while t = 1 is the case that we are interested in. So our
strategy is, fixing k ∈ N, 0 < α < 1, to now show that the set

Σ = {s ∈ [0, 1] | (Ys) has a smooth solution ϕs ∈ PSH(X,ω) ∩ Ck+2,α(X)}

is open and closed in [0, 1], then by connectedness, we are done. To take care of the normalizing
condition, we also require

∫
X ϕsω

n = 0.

3 A Sketch of the Proof

3.1 Preliminaries

We will from now on that ω is a fundamental form for our compact Kähler manifold X, and further:∫
X
ωn = 1.

In addition we will adopt the notation ωϕ used previously to mean ωϕ = ω + ddcϕ. We will call
a continuous function ω−plurisubharmonic (ω−psh) if ωϕ ≥ 0. These functions are needed as we
have no global plurisubharmonic functions on X due to the maximum principle.

If on some open subset of X there is a function g such that ω = ddcg, then ϕ + g is a true
plurisubharmonic function, so many properties of plurisubharmonic functions also hold for ω-psh
functions. One particularly useful property is that the regularization of a limit of a uniformly
bounded sequence is also ω-psh.

For a Borel set E ⊂ X, define the capacity:

capω(E) = sup

{∫
X
ωnϕ

∣∣∣∣ϕ ∈ PSH(ω), 0 ≤ ω ≤ 1

}
.



A sequence ϕj of functions defined on X is said to converge with respect to the capacity if for any
t > 0,

lim
j→∞

capω({|ϕ− ϕj | ≥ t}) = 0.

We have an analogue of the comparison principle for this case as well:

Theorem 3.1. If ϕ and ψ are ω-psh on X, then on Ω = {ϕ < ψ} we have∫
Ω
ωnψ ≤

∫
Ω
ωnϕ.

The proof is similar to the normal case. There is also an important estimate due to Hörmander,
called the exponential estimate, which can be extended to Kähler manifolds in the following way:

Theorem 3.2. Let ω be a Kähler form. There exists a strictly positive number α and a constant
C depending only on ω so that

1∫
X ω

n

∫
X
e−α(u−supX u)ωn ≤ C

for all u ∈ PSH(X,ω).

3.2 Uniqueness

We first show uniqueness of this equation. Existence is much tougher and we will tackle it later.

Proposition 3.1. Assume that X has no boundary. If ϕ and ψ are continuous on X and ωϕ > 0,
ωψ > 0 and ωnϕ = ωnψ, then ϕ− ψ is constant.

As a note, the assumption that ωϕ > 0 and ωψ > 0 is quite reasonable, as we are implicitly assuming
that ω is a Kähler form. In addition the normalizing condition we have enforced is now motivated;
by enforcing functions with zero average, this forces actual uniqueness.

Proof. We will prove this in the case of n = 2, the general case is similar. We know already that

ω2
ϕ − ω2

ψ = (ω + ddcϕ)2 − (ω + ddcψ)2 = 0.

We can write this as 0 = ddc(ϕ − ψ) ∧ (ωϕ + ωψ), so set ρ = ϕ − ψ. Since ωϕ > 0 and ωψ > 0 in
the sense of currents, we find that ϕ− ψ is constant. �

It is possible to generalize this proof to the case where ωϕ ≥ 0 and ωψ ≥ 0 (the degenerate case),
but it is slightly more involved.

3.3 Existence

Recall the definition of the set Σ given earlier, we have our first proposition, which we will sketch
instead of prove in painstaking detail.

Proposition 3.2. The set Σ is open.



Proof. Suppose s ∈ Σ, we must show that for t close to s, t ∈ Σ. Set ωs = ω + ddcϕs, and
gs = log[seh + (1− s)]. This allows us to rewrite the problem as

ωns = [seh + (1− s)]ωn = egsωn.

We are looking for ωt = ω + ddcϕt such that ωnt = egtωn. Taking the difference of ϕt and ϕs, we
find

(ωs + ddc(ϕt − ϕs))n = egt−gsωn.

Call this problem (Y ∗t−s)
Now for ε = t− s, observe that we can bound the right hand side:

kε = gt − gs

= log

[
teh + (1− t)
seh + (1− s)

]
= log

[
1 + ε

eh − 1

seh + (1− s)

]
= O(ε).

Now (Y ∗t−s) is a problem “nearby” (Y0), which we already know has a smooth solution. A compu-
tation reveals that the differential of the map taking ϕ 7→ ωnϕ/ω

n is the Laplacian, and so by some
standard theory we now apply the inverse function theorem in an appropriate Banach space (the
details of which we will skip), and we are done (note that this also takes care of the normalizing
condition). �

The proof to show that Σ is closed is much tougher. We need to establish several estimates to
do this. Note that it suffices to show that we can find β > α and C > 0 such that for all s ∈ Σ,

||ϕs||Ck+2,β ≤ C. (?)

Then we can use the face that this family is uniformly bounded in Ck+2,β, and thus relatively
compact in Ck+2,β. Indeed the family is actually compact as each limit point ψ = limϕsi , si → s,
is still normalized ∫

X
ψωn = 0,

hence ψ = ϕs. However since we chose α arbitrarily, we can choose β arbitrarily, and since we will
do this for any k, we will obtain a smooth solution. The general steps go as follows:

1. We will show that the family {ϕs} is uniformly bounded in L∞(X):

||ϕs||L∞(X) ≤ C.

2. Then (using the uniform bound above) we move on to show that there exists a C2 > 0 such
that for all s ∈ Σ,

sup
X
|∆ϕs| ≤ C2,

where ∆ϕs is the Laplace operator corresponding to the Kähler form ω. Then prove ? in the
case of k = 0, and some β > 0

3. At this stage we can invoke standard estimates from the theory of elliptic equations, and use
a bootstrapping argument to conclude the result.



All but the first step will be left for other treatments, and our presentation stems from the
pluripotential theoretic proof due to Ko lodziej, adapted in [K,GZ]. Our line of reasoning will follow
closely the survey [PSS]. In fact, we will prove a more general scenario, where the form is merely
semi-positive and closed (as well as not uniformly zero). Set ωt = χ + (1 − t)ω, where χ can be
semi-positive and closed and ω is a Kähler form. As before consider the equation

(ωt + ddcϕt)
n = gtω

n
t

for some positive function gt and ϕt ∈ PSH(X,ω) ∩ L∞(X). Then we have the following uniform
estimate:

Theorem 3.3. Let A > 0 and p > 1. Assume that χ ≤ Aω and 1∫
X ωnt

ωnt
ωn ≤ A. Assume also that

ft ∈ Lp(X,ωnt ) and
1∫

X ω
n
t

∫
X
fpt ω

n
t ≤ Ap <∞

for all t ∈ (0, 1). Normalize ϕt such that maxX ϕt = 0. Then there exists a constant C > 0,
depending only on n, ω and A, such that

sup
t∈[0,1)

||ϕt||L∞(X) ≤ C.

Proof. Set

ft(s) =

(
capω({ϕt < s)}∫

X ω
n
t

)1/n

.

We claim that it suffices to show that there exists sm <∞ such that ft(s) = 0 for all s > sm. For
convience set {ωnt } =

∫
X ω

n
t ; by definition of the capacity, we know that ft(s)

n ≥ 1
{ωnt }

∫
ϕ<−s ω

n
t . If

this were zero for all s > sm, then we would have that ωt ≥ −sm a.e. with respect the the measure
ωnt , and since it is upper-semicontinous, it satisfies the inequality everywhere. �

So it remains to prove that there exists a finite sm such that ft(s) = 0 for all s > sm. A lemma
of De Giorgi will prove this, it states:

Lemma 3.3.1. Let f : R+ → R+ satisfy:

1. f is right-continuous;

2. f decreases to zero;

3. there exists positive constants α, Aα for which all s ≥ 0 and all 0 ≤ r ≤ 1, rf(s + r) ≤
Aαf(s)1+α.

Then there exists sm, depending only on the above constants and the smallest value s0 for which
f(s0)α ≤ (2Aα)−1 so that f(s) = 0 for s > sm. Indeed we can take sm = s0+2Aα(1−2−α)−1f(s0)α.

We will show piece by piece that ft satisfies the above lemma. The first is actually simple,
as for any Kähler form ω, and any sequence of Borel sets Ej ⊂ Ej+1, we have capω(∪jEj) =
limj→∞ capω(Ej). Now observe that as s aprroahces from the right, we get such a sequence of
Borel sets.

It is clear that ft(s) decreases with s increasing. In fact, more is true, ft(s) decreases uniformly
to zero as s increases.



Lemma 3.3.2. There exists a constant C depending only on ω and an upper bound A for χ so that
ft(s)

n ≤ Cs−1.

Proof. Let u ∈ PSH(X,ωt). Then∫
ϕt<−s

(ωt + ddcu)n ≤ 1

s

∫
X

(−ϕt)(ωt + ddcu)n

=
1

s

∫
X

(−ϕt)ωnt +
1

s

∫
X

[Bonus Terms],

where the extra terms come from actually expanding out (ωt+ddcu)n and collecting all terms other
than ωnt . The first integral, using that ωnt ≤ A{ωnt }ωn, and noting that by the definition of ω-psh
functions, PSH(X,ωt) ⊂ PSH(X, (A+1)ω), we can use exponential boundedness to conclude that
the first integral is bounded by C{ωnt }. The second term, after a re-writing, can be bounded by a
uniform constant times {ωnt } (the details are skipped for clarity). This establishes the claim. �

It remains to establish the last condition for ft(s). For this, we need the following two results.

Lemma 3.3.3. Let ϕ ∈ PSH(X,ω) ∩ L∞(X). Then for all s > 0, 0 ≤ r ≤ 1,

rncapω(ϕ < −s− r) ≤
∫
ϕ<−s

(ω + ddcϕ)n.

Lemma 3.3.4. There exists constants δ, C > 0 so that for any open set E ⊂ X, and any t ∈ [0, 1),
we have

1

{ωnt }

∫
E
ωnt ≤ C exp

[
−δ
(
{ωnt }

capω(E)

)1/n
]
.

If we assume these two lemmas for now, we can establish the final inequality for ft(s). For some
α > 0 we have

[rft(r + s)]n = rn
capωt(ϕt < −s− r)

{ωnt }

≤ 1

{ωnt }

∫
ϕt<−s

(ωt + ddcϕt)
n

=
1

{ωnt }

∫
ϕt<−s

gtω
n
t

≤
(

1

{ωnt }

∫
ϕt<−s

gpt ω
n
t

)1/p( 1

{ωnt }

∫
ϕt<−s

ωnt

)1/q

≤ A exp

[
−δ
q

(
{ωnt }

capω(ϕt < −s)

)1/n
]

≤ Aαft(s)(1+α)n.

Now we prove the two remaining lemmas.

Proof of Lemma 3.3.3. Let u ∈ PSH(X,ω) with 0 ≤ u ≤ 1, and write

rn
∫
ϕ<−s−r

(ω + ddcu)n =

∫
ϕ<−s−r

(rω + ddcru)n



≤
∫
ϕ<−s−r+ru

(ω + ddc(ru− s− r))n

≤
∫
ϕ<−s−r+ru

(ω + ddcϕ)n

where we applied the comparison principle. For the last integral, since −r+ ru is non-positive, this
last integral is bounded by the integral over the larger region {ϕ < −s}, and taking the supremum,
this proves the claim. �

The next lemma requires some notions about global extremal functions.

Lemma 3.3.5. Let E ⊂ X be an open set, and define its global extremal function ψE,ω as the
upper semi-continuous envelope of the following function

ψ̃E,ω = sup{u ∈ PSH(X,ω) |u = 0 on E}.

Then

1. ψE,ω ∈ PSH(X,ω) ∩ L∞(X);

2. ψE,ω = 0 on E;

3. (ω + ddcψE,ω)n = 0 on X \ E.

Taking the above on faith (indeed, the proof follows from reducing it to a local statement about
plurisubharmonic functions on Cn, which in turn follows in much the same way as subharmonic
functions on C), we can now prove the final lemma.

Proof of Lemma 3.3.4. Let E′ ⊂ E be any relatively compact open subset. Then we see

1

{ωnt }

∫
E′
ωnt =

1

{ωnt }
e−δ supX ψE′,ωt

∫
E′
e−δ(ψE′,ωt−supX ψE′,ωt )ωnt

and this is bounded above by

e−δ supX ψE′,ωtA

∫
X
e−δ(ψE′,ωt−supX ψE′,ωt )ωn

where A is the upper bound for 1
{ωnt }

ωnt
ωn . Since χ ≤ Aω also by assumption, PSH(X,ωt) ⊂

PSH(X, (A+ 1)ω), and exponential boundedness implies the integral above is bounded by a con-
stant independent of t and E′.

First, observe that if supX ψE′,ωt ≤ 1, then

{ωnt } =

∫
E

′
(ωt + ddcψE′,ωt)

n ≤ capωt(E
′
) ≤ capωt(E) ≤ capωt(X) = {ωnt }.

This then implies that {ωnt }/capωt(E) = 1, and clearly then we are free to choose constants so that
the desird inequality holds.

Next, if supX ψE′,ωt > 1, we can write, by the same logic

(sup
X
ψE′,ωt)

−n = (sup
X
ψE′,ωt)

−n
∫
E

′(ωt + ddcψE′,ωt)
n

{ωnt }
≤
∫
E

′(ωt + ddc(ψE′,ωt/ supX ψE′,ωt))
n

{ωnt }
.

This last term is bounded by {ωnt }−1capωt(E
′) ≤ {ωnt }−1capωt(E). So we obtain

1

{ωnt }

∫
E′
ωnt ≤ exp

(
−δ
(
{ωnt }

capωt(E)

)1/n
)
.

Taking a little care as E′ approaches E, we are done. �



4 References

Sources:

[GZ ] Degenerate Complex Monge-Ampère Equations, V. Guedj, A. Zeriahi. EMS Tracts in Math-
ematics 26.

[B ] Complex Monge-Ampère Equations in Kähler Geometry, Z. Blocki. Lecture Notes.

[K ] The Complex Monge-Ampère Equation and Pluripotential Theory, S. Ko lodziej. Memiors of
the AMS.

[PSS ] Complex Monge-Ampère Equations, D.H. Phong, J. Song, J. Sturm. arXiv:1209.2203v2


